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Summary. At present, genetic evaluation in livestock 
using best linear unbiased prediction (BLUP) assumes 
autosomal inheritance. There is evidence, however, of 
X-chromosomal inheritance for some traits of economic 
importance. B L U P  can accommodate models that in- 
clude X-chromosomal in addition to autosomal inheri- 
tance. To obtain B L U P  with autosomal and X-chromo- 
somal additive inheritance for a population in which 
allelic frequency is equal in the sexes, and that is in gamet- 
ic equilibrium, we write y~=x'~ fl+a~+s~+e~, where y~ is 
the phenotypic value for individual i, x'~, is a vector of 
constants relating y~ to fixed effects, fl is a vector of fixed 
effects, a t is the additive genetic effect for autosomal loci, 
st is the additive genetic effect for X-chromosomal loci, 
and e~ is random error. The covariance matrix of a[s is 
A a~, where A is the matrix of twice the co-ancestries 
between relatives for autosomal loci, and a2 is the vari- 
ance of additive genetic effects for autosomal loci. The 
covariance matrix of si's is S @ ,  where S is a matrix of 
functions of co-ancestries between relatives for X-chro- 
mosomal loci and @ is the variance of additive genetic 
effects for X-chromosomal loci for noninbred females. 
Given the covariance matrices of random effects a i, s~, 
and e~, BLUPs of autosomal and of X-chromosomal ad- 
ditive effects can be obtained using mixed model equa- 
tions. Recursive rules to construct S and an efficient al- 
gorithm to compute its inverse are given. 
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Introduction 

Methods for genetic evaluation in livestock usually as- 
sume only autosomal inheritance. There is evidence, 
however, that X-linked (X-chromosomal) inheritance 
may make a contribution that should not be ignored in 
evaluating individuals genetically for economically im- 
portant  quantitative traits (e.g., Jerome etal. 1956; 
Thomas et al. 1958; VanRaden 1987). 

Best linear unbiased prediction (BLUP) (Henderson 
1973) is widely used for genetic evaluation in livestock for 
traits with autosomal inheritance (e.g., Benyshek et al. 
1988; Wiggans et al. 1988; Robinson and Chesnais 1988). 
BLUP can accommodate models that include X-chromo- 
somal in addition to autosomal inheritance. At present, 
however, models used for genetic evaluation do not ac- 
count for X-chromosomal inheritance. 

The objective of this paper is to show how BLUP can 
be used for genetic evaluation in the presence of autoso- 
mat and X-chromosomal additive inheritance. 

Theory 
Genetic model 

We assume that the male is heterogametic (XY) and the female 
is homogametic (XX). The Y chromosome is considered to con- 
tain inert loci and is ignored. Further, we assume a population 
in which allelic frequency is equal in the sexes and that is in 
gametic equilibrium. Results developed here also are applicable 
to species in which the male is homogametic (ZZ) and the female 
is heterogametic (ZW), such as poultry. 

Consider a single X-chromosomal locus. We define the addi- 
tive genotypic value for a trait in male M to be 9M and for the 
same trait in female F to be 9F. Male M receives its allele x from 
its maternal parent and female F receives alleles xm from its 
maternal parent m, and xp from its paternal parent p. Then, for 
male M, 



76 

and, for female F, 

gF = ~m + 0~p, 

where c~ is the additive genetic effect for the maternal allele (x) in 
male M, and where ~,, and % are additive genetic effects for the 
maternal (x,,) and paternal (Xp) allele in female F. We assume 
that additive effects for the same allele in males and females are 
equal. Therefore, because allelic frequency is equal in the sexes, 

v(~)=v(%)=v(%). (1) 

Thus, additive genotypic variance for males, V (gM), and for non- 
inbred females, V(gr), are 

v(g~,)=v(~) 
and 

V (gF)= V (~m-~ O~p) 

=v(%)+v(~) 
=2V(c~) 

=2V(g~t), 

from Eq. (1). 
For a trait determined by many such loci, therefore, additive 

genetic variance for noninbred females (@) is twice additive 
genetic variance for males (trOt). Variance for inbred females is 
@(1 + f), where f is the coefficient of inbreeding for X-chromo- 
somal loci (Wright 1933). 

Consider again a single X-chromosomal locus. Additive 
genotypic covariance between two males M and M' is 

C(9M, gM,)= C (~, :() = V(c0 P(x=-x ') 

= V (~) ruM, 

=�89 rM.,, 
where P(x=-x ') denotes the probability that allele x is identical 
by descent to allele x', and where the co-ancestry between males 
(r~u,) is the probability that allele x in M is identical by descent 
to the allele x' in M' (Grossman and Eisen 1989). 

Additive genotypic covariance between two females F and 
U is 

C(g. gF,)=C(%, %,)+ C(%, G,)+ C(%, ~m,)+ C(%, %) 
=V(%) [P(x~=- x,,,)+ P(x,~xp,)+ P(xp=- Xm,)+ P(xp=--xr 

= V(%) (4rFe,) 

=�89 (4 rFe,) 

= 2 V(gF) rFe,, 

where the co-ancestry between females (rpF,) is the probability 
that an allele drawn at random from F is identical by descent to 
an allele drawn at random from F' (Grossman and Eisen 1989). 

Additive genotypic covariance between male M and female 
F is 

C(OM, gr)= C(~, %)+ C(c~, %). 
Because additive effects for the same allele in the sexes are equal, 

C(gM, gF) = V ( " )  [P(x=--Xm)+P(x~Xp)] 

= v (cO (2 r ~ )  

=�89 (2rMF) 

=V(g~) r~,  
where the co-ancestry between male and female (r~v) is the 
probability that the allele x in M is identical by descent to an 
allele drawn at random from F (Grossman and Eisen 1989). 

For a trait determined by many such loci, therefore, additive 
genetic covariance between males is �89 r~M,, between females 
it is 2((r 2) rFv,, and between male and female, (a 2) ruv. 

Best linear unbiased prediction 

Total additive genetic effect for animal i can be written as the 
sum of its additive genetic effect for autosomal loci (ai) and its 
additive genetic effect for X-chromosomal loci (si). To obtain 
BLUP of a~ and s~, we write 

y i=  x'  i fl + ai + si + ei , (2) 

where y~ is the phenotypic value for individual i, x' i is a row 
vector of constants relating yr to fixed effects, fl is a column 
vector of fixed effects, and ei is random error. 

The covariance matrix of ai's is A a 2, where A is the matrix of 
twice the co-ancestries between relatives for autosomal loci 
(Henderson 1976) and a~ is the variance of additive genetic 
values for autosomal loci. The covariance matrix of si's is Scr 2, 
where S is a matrix whose elements are functions of co-ancestries 
between relatives for X-chromosomal loci. The covariance ma- 
trix of e~'s is assumed to be Ia 2. 

Given the covariance matrices of effects a~, s~, and e i and one 
record for each individual, BLUPs of autosomal effects (~i) and 
of X-chromosomal effects (~) are obtained using mixed model 
equations (MMEs) (Henderson 1973): 

X I+A la2/c;2 I = 
X I I + S-  1 a2/@ 

The inverse of A can be obtained simply by an algorithm 
described by Henderson (1976). The construction of S and the 
simple, efficient computation of its inverse follow. 

Construction of S via the tabular method 

The t abu la r  me thod  to const ruct  S is based on  the follow- 
ing l inear models  for additive genotypic  values for 
X-ch romosoma l  loci in male M with a ma te rna l  pa ren t  m 
and  in female F with a ma te rna l  pa ren t  m and  a pa terna l  
pa ren t  p. 

1 Male:  SM=ySm+eM (3) 

Female :  sr=�89 ~. (4) 

Theorem 

F o r  individuals  i and  j,  where i is no t  a direct descendent  
of j ,  the covar iance be tween st and  ej is null.  

Proof 

See 'Appendix ' .  
Now,  covar iance  be tween an  ind iv idua l  i and  male M, 

where i is no t  a direct descendent  of M, can  be wri t ten as 

C(s~, s~,)=C(si, �89 

=�89 s.,)+ C(s. 8M) 
=~C(s. s.3, (5) 

because C(s i, em) is zero from 'Theorem' .  



Covariance between individual i and female F, where i 
is not  a direct descendent of F, can be written as 

C(s~, s~)=C(s,, �89 
=�89 s,.) + C(s,, sp)+ C(s. ~) 
= � 8 9  Sm)At- C(S/, Sp) ,  (6) 

because C(si, ev) is zero from 'Theorem'. 
From Eqs. (5) and (6), recursive rules to construct the 

S matrix, similar to those of Henderson (1976), are given 
below. 
(1) Number  individuals such that progeny follow par- 

ents. 
(2) For  females, set diagonal elements to i. 

1 (3) For  males, set diagonal elements to 7" 
(4) For  female i with mother m and father p, element j of 

row i (su) in S is computed as 

_1  for j = l ,  i - 1 .  Sij - -  ~ Smj ~- Sp j ,  . . .  , 

(4.1) Elements in column i are obtained by symmetry. 
(4.2) Add s,,p to s u. 

(5) For  male i with mother m, element % is computed as 

_1  for j = l  . . . .  i--1 S i j - - ~ S m j ,  , �9 

(5.1) Elements in column i are obtained by symmetry. 

Numerical example for constructing S 

Consider the pedigree in Fig. 1. Following Henderson 
(1976), we can tabulate this information as in Table 1. To 
construct S (Table 2), set diagonal elements to �89 for males 
1, 3, 5, and 7. Set diagonal elements to I for females 2, 4, 
6, and 8. Off-diagonal elements for the upper left 2 x 2 
submatrix are zero because base-population individuals 1 
and 2 are assumed to be unrelated. 

Row elements below the diagonal are obtained by 
rules 4 and 5. Column elements above the diagonal are 
obtained by symmetry. Row elements for male 3 are zero 
because its mother is unknown. Each row element for 
female 4 is obtained by taking one-half the corresponding 
element in row 2 plus the corresponding element in row 1. 
Each row element for male 5 is obtained by taking one- 

56" 

Fig. 1. Pedigree involving inbreeding, with individuals distin- 
guished by sex (adapted from Henderson 1976) 

Table l. Individuals and their parents from Fig. t 

Individual Parents 
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1 r unknown 
29 unknown 
3r 1 and unknown 
49 1 and 2 
5r 3 and 4 
69 1 and 4 
7d 5 and 6 
89 5 and 6 

Table 2. S matrix 

1r 29 3r 49 5r 69 7r 89 

1r 1/2 0 0 1/2 1/4 3/4 3/8 5/8 
29 0 t 0 1/2 1/4 1/4 1/8 3/8 
38 0 0 1/2 0 0 0 0 0 
49 1/2 1/2 0 t 1/2 i 1/2 t 
5r 1/4 1/4 0 1/2 1/2 1/2 1/4 3/4 
69 3/4 1/4 0 l 1/2 1+1/2 3/4 5/4 
7r 3/8 1/8 0 1/2 1/4 3/4 1/2 5/8 
89 5/8 3/8 0 1 3/4 5/4 5/8 1 + 1 / 2  

half the corresponding element in row 4. Each row ele- 
ment for female 6 is obtained in a manner similar to 
row 4, except that rows 4 and 1 are used. Note that 

_1  is parents of female 6 are related, so that element s 4 ~ - 7  
added to the diagonal element for female 6. Elements in 
rows and columns 7 and 8 are obtained in a similar 
manner. 

Computation of S inverse 

Following Quaas et al. (1984), Eqs. (3) and (4) are used to 
write the vector (s) of additive genetic effects for X-chro- 
mosomal loci: 

s = P s + G  

where P is a matrix in which each row contains one or 
two nonzero elements, if parents are known, or all zeros, 
if parents are unknown. From Eq. (3), the row for a male 
contains an element �89 in the column corresponding to its 
maternal parent. From Eq. (4), the row for a female con- 

1 in the column corresponding to its tains an element 
maternal parent and an element 1 in the column corre- 
sponding to its paternal parent. 

It is shown below that the covariance matrix of ~ is 
Va 2, where Visa  diagonal matrix of order n, the number 
of individuals in the pedigree. For  any two individuals, 
one will not be a direct descendent of the other. Thus, 
without loss of generality, let i be an individual that is not  
a direct descendent of j, which has maternal and paternal 
parents m and p. Covariances of s i, sin, and sp with e~ are 
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null, from 'Theorem', because parents m and p are not 
and cannot be direct descendents of individual j. Hence, 
from Eqs. (3) and (4), the covariance between e~ and ej is 
also null and V is diagonal. 

To proceed, we need the diagonal elements of V for 
males and for females when parents are known and un- 
known. If parents m and p are known, the diagonal ele- 
ment for a male [from Eq. (3)] or for a female [from Eq. (4)] 
is �88 - f ) ,  where f is the coefficient of inbreeding for the 
maternal parent m. If maternal parent m is unknown, the 

1 If pater- diagonal element for a male or for a female is ~. 
nal parent p is unknown, the diagonal element for a male 
is � 8 8  and the diagonal element for a female is 
� 8 8  If both parents are unknown, the diagonal ele- 

1 and for a female is 1. ment for a male is 
Again, following Quaas et al. (1984), s can be written 

a s  

s = ( I - P )  -1 

and the covariance matrix of s as 

v (s) = s ~ = ( t -  e ) - '  v ( I -  e ' )-~ o~. 

The inverse of S now can be written as 

S - I = ( I - P  ') V - ~ ( I - P ) = Q  V -~ Q', (7) 

where Q = ( 1 -  P'). Because V- 1 is diagonal, Eq. (7) can be 
written as 

S - l = X i q l q ' i d l ,  for i = 1  . . . . .  n, 

where q~ is column i of Q and d~ is diagonal element i of 
V - 1 .  

Thus, to construct the inverse of S directly, 

(1) set S-~ to 0. 
(2) For  each individual i, with maternal and paternal 
parents m and p, add d~ times the following to the indicat- 
ed elements of S -  ~ : 

to element (m, m), i to element for males, if m is known, 
1 to elements (m, i) and (i, m). If m is unknown, (i, i), and - 

omit elements involving m; 

o r  

1 for females, if m and p are known, z to element (m, m), 1 
to elements (p, p) and (i, i), �89 to elements (m, p) and (p, m), 
- � 89  to elements (m, i) and (i, m), and - 1 to elements (p, i) 
and (i, p). If m is unknown, omit elements involving m. If 
p is unknown, omit elements involving p. 

Numerical example for constructing S inverse 

Consider the pedigree in Fig. 1 and Table 1. We need first 
to construct the diagonal elements of V. Because parents 
of individuals 1 and 2 are unknown, the diagonal element 
for male 1 is �89 and the diagonal element for female 2 is I. 
The maternal parent of male 3 is unknown so the diago- 

Table 3. P matrix 

1~ 22 36 ~ 42 5d ~ 62 7~ 82 

1c~ 0 0 0 0 0 0 0 0 
22 0 0 0 0 0 0 0 0 
33 0 0 0 0 0 0 0 0 
49 1 l/2 0 0 0 0 0 0 
53 0 0 0 1/2 0 0 0 0 
62 1 0 0 1/2 0 0 0 0 
7~ 0 0 0 0 0 1/2 0 0 
82 0 0 0 0 1 1/2 0 0 

Table 4. Q = ( I -  P') matrix 

18 22 33 42 53 69 7d 89 

tc~ 1 0 0 - 1  0 - 1  0 0 
22 0 1 0 -1 /2  0 0 0 0 
33 0 0 1 0 0 0 0 0 
4~ 0 0 0 1 -1 /2  -1/2 0 0 
5(~ 0 0 0 0 1 0 0 - 1  
69 0 0 0 0 0 1 - 1/2 -1/2 
7~ 0 0 0 0 0 0 1 0 
82 0 0 0 0 0 0 0 1 

Table 5. S -  1 = QV- 1 Q, 

13 29 33 49 53 62 73 82 

13 10 2 0 - 2  0 --4 0 0 
2(? 2 2 0 - 2  0 0 0 0 
3~ 0 0 2 0 0 0 0 0 
4~ --2 --2 0 6 - 2  --2 0 0 
5d' 0 0 0 - 2  12 4 0 - 8  
65 - 4  0 0 - 2  4 8 - 4  - 4  
73 0 0 0 0 0 - 4  8 0 
89 0 0 0 0 --8 - 4  0 8 

i hal element is 7" Parents of individuals 4, 5, and 6 are 
known, and individuals 2 and 4 (their maternal parents) 

1 Parents of are noninbred, so the diagonal elements are ~. 
individuals 7 and 8 are known, and individual 6 (their 
maternal parent) is inbred ( f  = �89 so the diagonal ele- 
ments are 1/8. 

The matrix P for this pedigree is in Table 3. The first 
three rows are null because maternal parents are un- 
known for males I and 3 and both parents are unknown 
for female 2. For  female 4, with parents 1 and 2, column 
1 corresponding to its paternal parent contains I and 
column 2 corresponding to its maternal parent contains 
�89 For  male 5, with parents 3 and 4, column 4 correspond- 

1 For  remaining ing to its maternal parent contains g. 
individuals, rows are obtained in a similar manner. 

The matrix Q = ( I - P ' )  is in Table 4. It can be verified 
that Q V- 1 Q, is the inverse of S, which is in Table 5. 
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Discussion 

We have described a tabular method to construct the S 
matrix for X-chromosomal loci. We also developed a 
simple and efficient algorithm to compute the inverse 
of S. This development allows for X-chromosomal inher- 
itance to be accounted for in genetic evaluation by in- 
cluding X-chromosomal additive effects, in addition to 
autosomal additive effects, in a mixed model. This results 
in an increase in the number of mixed model equations 
equal to the number of individuals in the pedigree. Equiv- 
alent models, such as the reduced animal model, may be 
used to reduce the number of equations. 

Our  procedure requires knowledge of variances of 
autosomal and X-chromosomal additive effects. Based on 
chromosome numbers for farm animals, Lush (1945) sug- 
gested that X-chromosomal inheritance accounts for 
about 5% of total genetic variance. In species with few 
chromosomes, such as D. melanogaster ,  variance due to 
X-chromosomal inheritance can account for a large pro- 
portion of total genetic variance for some traits (Cowley 
et al. 1986). 

Differences in heritabilities from the sire component  
and from the dam component,  obtained by estimating 
sire and dam variance components using Method I 
(Henderson 1953), suggested that X-chromosomal effects 
could affect body weight or weight gain in female chick- 
ens (Jerome et al. 1956; Thomas et al. 1958). VanRaden 
(1987) compared variance components for sire and ma- 
ternal grandsire, and suggested that about 5% of genetic 
variation for milk and for fat production in Holstein 
cattle is located on the X-chromosome. 

The mixed model presented here can be used to esti- 
mate directly variance components for autosomal and 
X-chromosomal additive effects by restricted maximum 
likelihood (REML). With this approach, all data and all 
known relationships arc used to estimate the variance 
components. If data used for selection decisions are in- 
cluded in the analysis, then R E M L  can be computed, 
ignoring selection (Fernando and Gianola 1990; Im et al. 
1989). 

We have assumed that allelic frequency in the popula- 
tion is equal in the sexes. This is not a valid assumption 
for a cross between populations with different alMic fre- 
quencies, for example. For  a single autosomal locus, a 
crossbred population will achieve genotypic equilibrium 
in one or two generations of random mating, whereas 
for a single X-chromosomal locus the population will 
achieve equilibrium only in the limit. When the popula- 
tion is in disequilibrium, covariances between relatives 
can be obtained, but not easily (Grossman and Fernando 
1989), and computing genetic evaluations is not  straight- 
forward. 

Our approach to the analysis of X-chromosomal 
inheritance could be extended to accommodate other 

modes of inheritance, such as dosage compensation or 
X-chromosomal inactivation (Levitan 1988), by con- 
structing the appropriate covariance matrix of s/s. Alter- 
native modes of inheritance could be tested by comparing 
likelihoods under the alternative models. 

Recent research by Schaeffer et at. (1989) outlines the 
genetic analysis of autosomally inherited effects when 
either the paternal or maternal gamete is expressed. Our  
analysis of X-chromosomally inherited effects is based on 
the maternal gamete being expressed in the male and in 
the female, but on the paternal gamete being expressed 
only in the female. 

Appendix 
Proof of  theorem 

Let su be the additive genotypic value for X-chromosomal loci 
in male M with a maternal parent m and let s F be the additive 
genotypic value for X-chromosomal loci in female F with mater- 
nal and paternal parents m and p. Then we can represent these 
genotypic values in a linear model as a function of additive 
genetic effects for the maternal (sin) and paternal (s~) parents: 

1 SM---~ Sm-}- 8 M 

and 

S F : I  Sm-~ Sp-~ SF . 

From the text, it has been shown that additive genotypic 
covariance between males M and M' " 1 2 ts ~(aF) rM~, between fe- 
males F and F' it is 2(@) rf~, and between male M and female 
F, (~) r~,~. 
Female-female. Covariance between additive genotypic values 
for females F and F', where F is not a direct descendent of F', is 

C(s~, st)= C(s~, �89 +Sp, +a~,) 
=�89 Sm,)+C(s~, S,,)+ C(SF, ~r)" 

From the above, _ ~ _ z C(@, s r ) - 2 a r  rpr, C(SF, Sm,)--2aF rf,,,, and 
C(@, Sp,)=@ rFv,, so that 

2 1 2 G F rFr - ~ C (s~, s~,) + C (sF, sv, ) + C (sr, ~r ) 

= 7 2 o  u  2 rFm, + a~ rFp, + C (sF, re,) 

=@[rF~,, +r~v,]+C(@, @,). 

From Grossman and Eisen (1989), [rFm, + rFp, ] = 2 rFr . Thus 
2 - -  2 2 a F rrr - a F 2 rer + C (@, e r ) ,  

hence, C(SF, ~r)=0. 
Male-female.  Covariance between additive genotypic values for 
male M and female F', where M is not a direct descendent of F', 
is 
C(sM, st)= C(s~, �89 +Sp, +~r) 

=�89 s~,)+C(s~, s~,)+ C(s~, ~,). 
From the above, 2 2 C(sg, s r ) = a  v rMr, C(sM, s,,,)=a F rMm,, and 
C(sM, _1 2 sp , ) -  ycr F rMv,, so that 

2 1 aF r~ r -~C(s~ ,  s~,) + C(s~, sp,)+ C(s~t, ~r) 

= � 8 9  rM~, + � 8 9  r,~,, + C(sM, ~ )  
- -  2 1  - -a  e g[rMm' + rup' ] + C ( s u  , ~F" )" 

From Grossman and Eisen (t989), �89 +rgp , ]=rgr .  Thus 
2 __ 2 

a F rMF,--(7 F rMF,-~-C(SM, eF,), 

hence, C (s M, e r )  = 0. 
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Female male. Covariance between additive genotypic values for 
a female F and male M', where F is not a direct descendent of 
M', is 

C(SF ' SM,)=C(sF,  1 ~S,~,+~M,) 
=�89 sin,)+ C(sF, e~,). 

From the above, C(sv, SM,)= @ rrM, , C(sv, sin, ) = 2 @  rFm,, so 
that 

2 1 av rvM, =~C(sr, sin,) + C(s~, ~M') 

= ~  r~m, + C(sv, eM,). 

From Grossman and Eisen (1989), rFm,=rvM,. Thus 
2 2 

0-F rFM' = ff F rfM" + C ($F, S M ' ) ,  

hence, C(sv, eM, ) =0. 

Male-male. Covariance between additive genotypic values for 
males M and M', where M is not a direct descendent of M', is 

C(sM, s~,)=C(sM, 1 ~Sm,+~M,) 
1 = ~C(sM, Sm,)+C(sM, e~,). 

From the above, _1 2 C(SM ' z C(SM, S M , ) - - ~  rMM', Sin')= ~r rM~,, SO 
that 
1 2 1 -~a~ rMM, =~C(SM, S,,,) + C(s M, ~M,) 

1 2 
= 5 0 - F  rMm' + C (SM , eM' )" 

From Grossman and Eisen (1989), rM,.,=r~tM,. Thus, 
10-2 1 2 . 
7 F rMM'--y0-FtMM'-I-C(SM, eM')'~ 

hence, C(SM, eM,)=0. 
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